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ABSTRACT
We have moved from lacking a sufficient supply of electricity/power to producing it in abundance, 
so it is paramount to decipher how to bring it to optimal usage. This research lays a hand on 
forecasting energy, bringing in the consumption of electricity and city across the households, 
enabling stakeholders to accurately predict future energy consumption and generation and 
meet the demand to enhance sustainable practices. This research examines various Machine 
Learning algorithms and the very essence of Time Series Forecasting. Forecasting can be done 
in different span/time intervals as required but eventually depends on factors such as managing 
the load, trading electricity, and optimizing energy storage, which is crucial for strategic planning 
and helps to identify trends influenced by economic and social factors. Considering how we are 
moving forward, having Power System Forecasting is essential to make the optimal use of our 
resources, and with the generated data, using the approach of Machine Learning and Forecasting 
to understand the pattern can make a difference.

Keywords: Energy, Forecasting, Optimization, Regression, Strategic Planning, Sustainability, 
Time Series. 

INTRODUCTION

Electricity is the paramount form of energy, essential for driving 
progress and innovation. Traditionally, fossil fuels have been 
the sole contributors to energy production. However, as we 
have witnessed their consumption and depletion rates, the 
need for alternative energy sources has become increasingly 
critical. Advancements in technology have illuminated various 
renewable energy sources, including solar, wind, hydro, thermal, 
geothermal, and more. Despite this progress, the focus has often 
been on developing new alternatives rather than optimizing 
existing energy resources. As a result, we need to catch up in 
effectively utilizing what is already available.1,2

Applying Machine Learning (ML) and Neural Networks (NN) 
forecasting techniques can enhance our understanding of energy 
production and consumption dynamics. Machine learning 
models are employed for:

i. Understanding weather conditions,

ii. Energy forecasting,

iii. Statistical analysis based on historical data,

iv. Creating suitable classification and regression models.3,4

Given the pressing need for efficient energy consumption amid 
a growing global population, analyzing historical data to train 
predictive models is imperative. These models can help determine 
when, where, and with what intensity energy production is 
impacted. Such analysis is essential for comprehending changing 
climatic conditions and maximizing energy capture.5

The interpretation of statistical data using machine learning can 
be simplified as enabling machines to learn from data patterns. 
Neural networks, which consist of interconnected nodes 
(including constant, variable, placeholder, and operating nodes), 
mimic the biological neural network's structure and function, 
allowing machines to perceive information similarly to the 
human brain.6 In this context, machine learning can be utilized 
to address critical challenges in energy forecasting.

It can analyse historical data for energy forecasting and optimize 
energy flow by modelling a simulated brain that regulates the 
distribution of necessary energy across residential, commercial, 
and industrial sectors while also capturing excess power for 
future use. This approach aims to extend electrical supply to every 
corner of the globe, especially areas lacking sufficient energy 
access.

To comprehend the mechanisms required for energy production 
while forecasting and evaluating total energy consumption at 
various energy-generating locations, we need machine learning 
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regression models to fit the data and predict continuous values. 
Several regression models that have gained prominence in this 
context include:

i. Linear Regression,

ii. Support Vector Regression (SVR),

iii. Decision Tree Regression,

iv. Random Forest Regression,

v. K-Nearest Neighbours (KNN),

vi. Artificial Neural Networks (ANN).7-9

These models enable us to analyze historical energy data, identify 
patterns, and make accurate predictions regarding44 future energy 
consumption and production. By employing these techniques, 
we can enhance the reliability of energy forecasting, ultimately 
supporting more effective energy management strategies.

LINEAR REGRESSION

The foremost algorithm in regression analysis is linear regression, 
which is known for its effectiveness in understanding profitability 
through insights and behaviour analysis of data. As the name 
implies, “regression” refers to fitting a line to data. At the same 
time, “linear” denotes the linear relationship between an 
independent variable (which describes characteristics or features 
of the data) and a dependent variable, also known as the target 
variable. Due to this univariate relationship, it is often referred to 
as simple linear regression.10

Extending this concept to encompass multiple independent 
variables leads to the term Multilinear Regression, which maps 
various feature variables to a single target variable.

Equation of Hypothesis

Linear Form

Y=Q0+Q1x1+Q2x2+Qnxn

Matrix Form

Y= QTx​

Where:

a.	​Y​: Actual output,

b.	​​Q​ 0​​​: Bias term,

c.	​: Qi ​Model parameters,

d.	​​​: xi Feature values (​​x​ 0​​ = 1​).

The model fits the best line, known as the regression line, which 
encapsulates the influence of all features on the output, achieving 
an average loss or cost that is minimized. This is quantified by 

the threshold error between the predicted values ​​Y​ pred​​​ and the 
observed target values ​​Y​ actual​​​.

11

SUPPORT VECTOR REGRESSION

Support Vector Regression (SVR) is a robust algorithm that 
focuses on minimizing violations of the margin distance, 
fitting as many instances as possible within this margin. It can 
accommodate both linear and non-linear models by tuning three 
primary parameters:

i. Tuning the C Parameter: Also known as the regularization 
parameter, it is essential for managing noisy data.

ii. Kernel Tuning: Linear algebra is used to learn the hyperplane 
by adjusting the kernel.

iii. Gamma Tuning: This parameter determines the closeness of 
the training data points in the feature space.

Several types of kernels can be employed in SVR, including linear, 
polynomial, exponential, and Gaussian kernels:

i. Linear Kernel:

​​

ii. Polynomial Kernel:

K (x,xi )=1+ (x.xi)
d

(Both linear and polynomial kernels are special cases of the 
Gaussian kernel.)

iii. Exponential Kernel:

K(x,xi )=e ((-τ+(x.x_i )2)

iv. Gaussian Kernel:

Where:

a.	​ σ​: Width of the Gaussian kernel

b.	​ x​: Input data point

Polynomial and exponential kernels employ the Kernel Trick 
to compute the separating hyperplane in higher-dimensional 
space. Training the model involves approximating the underlying 
function to achieve the desired outcome. The contraction 
coefficient (a vector of unknown variables) is calculated using the 
correlation matrix formula:



BEMS Reports, Vol 12, Issue 1, Jan-Jun, 2026 11

Mishra: Machine Learning for Energy Forecasting

The contraction coefficient (​α​) is determined using the dot 
product of the correlation matrix and the training dataset:

​α =   ​K​​ −1​ y​

Once the model is trained, testing is performed on a new data 
point:

A threshold value is set to minimize the difference between the 
actual and predicted outcomes, corresponding to the error.12-14

DECISION TREE

A Decision Tree can be interpreted as a15 decision-making model 
structured like a tree. This model organizes the decision-making 
process by prioritizing attributes based on the information 
required to predict a continuous value at the output leaf of 
regression trees. The branches or splits in the tree are determined 
by choosing features and establishing conditions, which are 
assessed using measures such as Information Gain, Entropy, and 
the Gini Index. A common technique employed for splitting is 
known as Recursive Binary Splitting.

Recursive Binary Splitting: This is a greedy approach that aims 
to minimize the cost function of the attribute while selecting it 
as a binary node (splitting into two) at each branch based on 
information derived from the following tools:

i. Entropy: Entropy quantifies the degree of randomness or 
uncertainty in information processing, controlling how attributes 
are split based on the features they contain. Higher entropy 
indicates greater randomness and makes interpretation more 
difficult. The formula for entropy is:

​​

ii. Information Gain: Information Gain measures the 
effectiveness of an attribute in reducing uncertainty, forming the 
core of Decision Tree creation:

​IG = E​(parent)​ − ​[Average weight]​ × E(child)​

iii. Gini Index: Gini Impurity represents the probability of 
misclassification of a randomly selected data sample at each node 
based on the data sample distribution. A significant reduction in 
the Gini Index upon node splitting indicates the effectiveness of 
that split. The formula for Gini Index is:

​​​

However, excessive splits can lead to increased complexity and 
overfitting when dealing with larger datasets. To mitigate this, 
methods such as setting a minimum training dataset size and 

a maximum depth for the decision tree can be implemented. 
Another effective technique is Pruning.

i. Pruning Technique: This technique optimizes the performance 
of Decision Trees by eliminating attributes with less significance 
or higher entropy. Two main approaches to execute this technique 
include:

ii.Reduce Error Pruning: This bottom-up method removes less 
significant child attributes without affecting accuracy.

Weakest Link/Cost Complexity Pruning: In this more complex 
method, a subtree is removed based on a learning parameter and 
the weight of its parent node.16,17

RANDOM FOREST

Random Forest builds on the Decision Tree concept, where 
the "forest" represents multiple Decision Trees considered 
simultaneously. The term "random" reflects that a random sample 
of the training dataset is used to construct the trees, and the 
selection of attributes for branching nodes is also random. This 
randomness is known as Bootstrapping.

Bootstrapping integrates randomness with replacing training 
samples for tree building and attribute selection for splitting under 
higher variance or lower entropy conditions. Due to this inherent 
randomness, the one with higher variance but lower cumulative 
variance is selected among the multiple Decision Trees formed. 
This predictive approach of choosing the optimal Decision Tree 
by averaging the variance is referred to as Bootstrap Aggregation 
or Bagging.18-20

K-NEAREST NEIGHBORS

K-Nearest Neighbors (KNN) is an easy-to-implement supervised 
machine learning algorithm used for both classification and 
regression tasks. As the name suggests, this algorithm relies on 
the proximity of data points, meaning that similar data items are 
located close to each other. To determine the closeness between 
data observations, the distance is calculated using the Minkowski 
Distance.

The Minkowski Distance is a generalized distance metric applied 
in a normed vector space, where the distance is measured between 
vectors. The term "normed" indicates that each vector has a 
non-negative length. The normed vector space is characterized 
by three properties: the zero vector, scalar factor, and triangular 
inequality, which governs the calculation of distance between 
points.

The formula for the Minkowski Distance is given by:

This distance metric can be tailored for different applications by 
varying the parameter ​p​:
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i. Manhattan Distance (p=1): This distance is defined as the 
absolute sum of differences between Cartesian coordinates and is 
commonly used to evaluate grid paths. The formula is:

​​​​​​

The L1 Norm, or Manhattan Distance, quantifies the absolute 
sum of differences in the vector space.

i. Euclidean Distance (p=2): This distance represents the 
straight-line distance between points. The formula is:

The L2 Norm, or Euclidean Distance, employs the Pythagorean 
Theorem to calculate distance. However, since the vectors 
are squared, this approach can skew results, as outliers 
disproportionately influence the distance.

i. Chebyshev Distance (p=∞): This distance is defined as the 
maximum absolute difference along any coordinate dimension:

KNN’s simplicity and effectiveness make it a popular choice for 
various machine learning applications, mainly when dealing 
with classification problems where the relationship between 
observations is crucial.21-23

EVALUATING METRICS

Loss Function

In regression tasks, loss functions measure the accuracy of 
predictions by quantifying the difference between the predicted 
and actual values. Below are five key loss functions for regression 
models,24,25 each with a formula and explanation:

Mean Square Error (MSE)

Mean Square Error is the most commonly used loss function in 
regression. It calculates the average squared difference between 
the actual and predicted values, making larger errors more 
significant due to squaring.

Where:

a. n: data size,

b. h(xi): hypothesis function,

h(Q) = Q0+Q1x1+Q2x2+. . . + Qnxn

c. y: Actual output.

MSE is sensitive to outliers since errors are squared before they 
are averaged, giving more weight to larger discrepancies.26

Root Mean Square Error (RMSE)

Root Mean Square Error is the square root of the MSE. It offers a 
measure of how far, on average, the residuals are from zero, in the 
same units as the output variable.

RMSE is often used for its interpretability and is effective when 
large errors are particularly undesirable.27

Mean Absolute Error (MAE)

Mean Absolute Error measures the average of the absolute 
differences between the predicted and actual values. Unlike MSE, 
it does not penalize larger errors as heavily since no squaring is 
involved.

MAE is robust to outliers and offers a more balanced metric for 
understanding prediction errors.28

CROSS VALIDATION

To ensure that the model has analysed and understood the data 
pattern without noise or without being overfitted/underfitting or 
with low bias, cross validation is required to statistically behold 
the stability of the model.

Cross Validation is a validation technique for the model to 
statistically examine the generalization pattern of the results on 
the independent dataset. 

This model validation method provides a bit of flexibility over the 
splitting or groups or k-folds, which are as follows:

k-Fold (k=2)

It means the data is grouped into two i.e. the training and the test 
data. This type of grouping is opted if, we have enough data to 
make the model learn the pattern on a randomly trained training 
data. Any duplicacy and overlapping of grouped data should be 
avoid and final model - after testing - should be retrained on the 
complete dataset without any tuning in the hyperparameters.

k-Fold (k=3)

This is comparatively a better approach then binary grouping the 
dataset as the dataset is bifurcated into three, the training data, 
the validation data and the test data. To evaluate the quality of 
model fitted on trained data, model is validated (prior to testing) 
on a new sample (validation dataset). This pattern is chosen if the 
data size is sufficient enough to be grouped as such.
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k-Fold (k)

For splitting the dataset, this is a prominent approach as the data 
available for to model the decipher the pattern is not never enough 
and model has to the problems of underfitting and increased loss. 

In this method, the data is grouped into k folds and model is 
trained into k-1 times. Each time k-1 portion is trained and is 
validated over the remaining portion. Each time the model is 
trained is validated on a new piece of data which significantly 
reduces the underfitting and the overfitting problem. This method 
is chosen for a small sized data as the model is free from a high 
bias or a high variance.

FORECASTING

Forecasting can be defined as the process of analyzing and 
examining collected historical and current data to make 
predictions about future scenarios.29 In the context of optimal 
energy usage and supply, forecasting plays a crucial role in 
enhancing efficiency, reducing costs, and improving resource 
allocation.30

Forecasting techniques are applied across various domains, 
particularly in fields characterized by fluctuating parameters, 
such as energy consumption, temperature, and weather.31 These 
techniques utilize statistical analysis to derive meaningful 
insights from observed data, which is subsequently fed into 
data processing phases to prepare datasets and apply regression 
algorithms.32

TIME SERIES FORECASTING

Time Series Forecasting is a technique used to predict33 events 
based on sequences of observations over time.34 It assumes that 
historical data patterns will continue. In energy forecasting, time 
series analysis helps identify trends, seasonality, and other cyclical 
patterns in energy usage.35

Critical aspects of time series forecasting include

i. Identification of Patterns: By analyzing historical data, various 
patterns such as trends (increasing or decreasing), seasonality 
(cyclical fluctuations), and noise (random variations) can be 
identified.36

ii. Stationarity: A stationary time series has constant mean and 
variance, making it easier to model.37 Statistical techniques are 
often employed to achieve stationarity by removing trends and 
seasonal effects.

The Augmented Dickey-Fuller Test (ADF Test) is commonly used 
to test for stationarity within a time series.38 The null hypothesis of 
this test indicates the39 presence of a unit root (non-stationarity), 
while the alternative hypothesis suggests the absence of unit roots 
(stationarity). A stationary time series will have consistent mean 
and variance, enabling more reliable predictions.40

A transformation method known as differencing is applied to 
remove dependencies in the series. This technique stabilizes the 
mean by eliminating trends and seasonal components, facilitating 
a more accurate analysis.41

Time series forecasting techniques have applications in various 
fields, including:

i. Weather Prediction: Forecasting energy demand based on 
temperature and weather patterns.42

ii. Pattern Recognition: Identifying usage trends and anomalies 
in energy consumption.43

iii. Economics: Analyzing and predicting market dynamics and 
energy pricing.44

iv. Earthquake Prediction: Utilizing time series methods 
to anticipate seismic events and their impact on energy 
infrastructure.45

ENERGY FORECASTING

Energy forecasting specifically refers to predicting future energy 
consumption, resource availability, and electricity prices.46 This 
type of forecasting informs policymakers, utility companies, 
and consumers about expected energy trends, facilitating better 
planning and management of energy resources.39

CONCLUSION

In conclusion, Power System Forecasting is a critical process that 
enables utilities and energy managers to make informed decisions 
regarding energy generation, distribution,47 and consumption. By 
utilizing various forecasting techniques tailored to different time 
spans-short-term, medium-term, and long-term-stakeholders 
can enhance the reliability and efficiency of power systems.

Short-term forecasting facilitates real-time management of 
electricity loads and trading, ensuring a balance between supply 
and demand. Medium-term forecasting aids in the optimization 
of energy storage solutions, especially for renewable sources, thus 
contributing to the sustainability of the energy sector. Long-term 
forecasting plays a vital role in strategic planning, enabling energy 
providers to anticipate future consumption trends influenced by 
socio-economic factors.

The application of statistical methods, such as regression models 
and time series analysis, allows for the effective prediction of 
energy needs, paving the way for a more resilient and responsive 
power system.47 As the energy landscape continues to evolve, the 
integration of advanced forecasting models will be paramount in 
addressing the challenges posed by fluctuating energy demands 
and the increasing reliance on renewable resources.
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