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ABSTRACT

We have moved from lacking a sufficient supply of electricity/power to producing itin abundance,
so it is paramount to decipher how to bring it to optimal usage. This research lays a hand on
forecasting energy, bringing in the consumption of electricity and city across the households,
enabling stakeholders to accurately predict future energy consumption and generation and
meet the demand to enhance sustainable practices. This research examines various Machine
Learning algorithms and the very essence of Time Series Forecasting. Forecasting can be done
in different span/time intervals as required but eventually depends on factors such as managing
the load, trading electricity, and optimizing energy storage, which is crucial for strategic planning
and helps to identify trends influenced by economic and social factors. Considering how we are
moving forward, having Power System Forecasting is essential to make the optimal use of our
resources, and with the generated data, using the approach of Machine Learning and Forecasting
to understand the pattern can make a difference.
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INTRODUCTION

Electricity is the paramount form of energy, essential for driving
progress and innovation. Traditionally, fossil fuels have been
the sole contributors to energy production. However, as we
have witnessed their consumption and depletion rates, the
need for alternative energy sources has become increasingly
critical. Advancements in technology have illuminated various
renewable energy sources, including solar, wind, hydro, thermal,
geothermal, and more. Despite this progress, the focus has often
been on developing new alternatives rather than optimizing
existing energy resources. As a result, we need to catch up in
effectively utilizing what is already available.'?

Applying Machine Learning (ML) and Neural Networks (NN)
forecasting techniques can enhance our understanding of energy
production and consumption dynamics. Machine learning
models are employed for:

i. Understanding weather conditions,
ii. Energy forecasting,

iii. Statistical analysis based on historical data,
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iv. Creating suitable classification and regression models.**

Given the pressing need for eflicient energy consumption amid
a growing global population, analyzing historical data to train
predictive models is imperative. These models can help determine
when, where, and with what intensity energy production is
impacted. Such analysis is essential for comprehending changing
climatic conditions and maximizing energy capture.’

The interpretation of statistical data using machine learning can
be simplified as enabling machines to learn from data patterns.
Neural networks, which consist of interconnected nodes
(including constant, variable, placeholder, and operating nodes),
mimic the biological neural network's structure and function,
allowing machines to perceive information similarly to the
human brain.® In this context, machine learning can be utilized
to address critical challenges in energy forecasting.

It can analyse historical data for energy forecasting and optimize
energy flow by modelling a simulated brain that regulates the
distribution of necessary energy across residential, commercial,
and industrial sectors while also capturing excess power for
future use. This approach aims to extend electrical supply to every
corner of the globe, especially areas lacking sufficient energy
access.

To comprehend the mechanisms required for energy production
while forecasting and evaluating total energy consumption at
various energy-generating locations, we need machine learning
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regression models to fit the data and predict continuous values.
Several regression models that have gained prominence in this
context include:

i. Linear Regression,

ii. Support Vector Regression (SVR),

iii. Decision Tree Regression,

iv. Random Forest Regression,

v. K-Nearest Neighbours (KNN),

vi. Artificial Neural Networks (ANN).”?

These models enable us to analyze historical energy data, identify
patterns, and make accurate predictions regarding* future energy
consumption and production. By employing these techniques,
we can enhance the reliability of energy forecasting, ultimately
supporting more effective energy management strategies.

LINEAR REGRESSION

The foremost algorithm in regression analysis is linear regression,
which is known for its effectiveness in understanding profitability
through insights and behaviour analysis of data. As the name
implies, “regression” refers to fitting a line to data. At the same
time, “linear” denotes the linear relationship between an
independent variable (which describes characteristics or features
of the data) and a dependent variable, also known as the target
variable. Due to this univariate relationship, it is often referred to
as simple linear regression."

Extending this concept to encompass multiple independent
variables leads to the term Multilinear Regression, which maps
various feature variables to a single target variable.

Equation of Hypothesis

Linear Form

Y=Q,+Qx+Qx,+Q x,
Matrix Form

Y=Q"x

Where:
a.Y: Actual output,
b.Q,: Bias term,
c:Q Model parameters,

d.: x, Feature values (x, = 1).

The model fits the best line, known as the regression line, which
encapsulates the influence of all features on the output, achieving
an average loss or cost that is minimized. This is quantified by
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the threshold error between the predicted values Y and the

observed target values Y !

actual”

SUPPORT VECTOR REGRESSION

Support Vector Regression (SVR) is a robust algorithm that
focuses on minimizing violations of the margin distance,
fitting as many instances as possible within this margin. It can
accommodate both linear and non-linear models by tuning three
primary parameters:

i. Tuning the C Parameter: Also known as the regularization
parameter, it is essential for managing noisy data.

ii. Kernel Tuning: Linear algebra is used to learn the hyperplane
by adjusting the kernel.

iii. Gamma Tuning: This parameter determines the closeness of
the training data points in the feature space.

Several types of kernels can be employed in SVR, including linear,
polynomial, exponential, and Gaussian kernels:
i. Linear Kernel:
K(x) = B, +Z(x,xi)afi
ii. Polynomial Kernel:
K (xx,)=1+ (x.x)*

(Both linear and polynomial kernels are special cases of the
Gaussian kernel.)

iii. Exponential Kernel:
K(x)xi ):e ((-t+(x.x_i)2)

iv. Gaussian Kernel:

1 -
Gip(x;0) = ezd?
o221
79‘2*3’21
Gop(x,y;0) = e 20°

Where:

a. 0: Width of the Gaussian kernel

b. x: Input data point

Polynomial and exponential kernels employ the Kernel Trick
to compute the separating hyperplane in higher-dimensional
space. Training the model involves approximating the underlying
function to achieve the desired outcome. The contraction
coeflicient (a vector of unknown variables) is calculated using the
correlation matrix formula:

BEMS Reports, Vol 12, Issue 1, Jan-Jun, 2026



Mishra: Machine Learning for Energy Forecasting

n
_ - 2
Kij=e Zﬁklxik = Xj|* + €6;;
k=1

The contraction coefficient («) is determined using the dot
product of the correlation matrix and the training dataset:

a= K'y

Once the model is trained, testing is performed on a new data

point: n

y'=a.K ;= e_zeklxik — Xpe|?
k=1

A threshold value is set to minimize the difference between the

actual and predicted outcomes, corresponding to the error.'>**

DECISION TREE

A Decision Tree can be interpreted as a'* decision-making model
structured like a tree. This model organizes the decision-making
process by prioritizing attributes based on the information
required to predict a continuous value at the output leaf of
regression trees. The branches or splits in the tree are determined
by choosing features and establishing conditions, which are
assessed using measures such as Information Gain, Entropy, and
the Gini Index. A common technique employed for splitting is
known as Recursive Binary Splitting.

Recursive Binary Splitting: This is a greedy approach that aims
to minimize the cost function of the attribute while selecting it
as a binary node (splitting into two) at each branch based on
information derived from the following tools:

i. Entropy: Entropy quantifies the degree of randomness or
uncertainty in information processing, controlling how attributes
are split based on the features they contain. Higher entropy
indicates greater randomness and makes interpretation more
difficult. The formula for entropy is:

Entropy = — YL, p;log (p;)

ii. Information Gain: the

effectiveness of an attribute in reducing uncertainty, forming the

Information Gain measures

core of Decision Tree creation:
IG = E(parent) — [Average weight] X E(child)

iii. Gini Index: Gini Impurity represents the probability of
misclassification of a randomly selected data sample at each node
based on the data sample distribution. A significant reduction in
the Gini Index upon node splitting indicates the effectiveness of
that split. The formula for Gini Index is:

c
Gini=1-— Z:(pi)2
=1

However, excessive splits can lead to increased complexity and
overfitting when dealing with larger datasets. To mitigate this,
methods such as setting a minimum training dataset size and
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a maximum depth for the decision tree can be implemented.
Another effective technique is Pruning.

i. Pruning Technique: This technique optimizes the performance
of Decision Trees by eliminating attributes with less significance
or higher entropy. Two main approaches to execute this technique
include:

ii.Reduce Error Pruning: This bottom-up method removes less
significant child attributes without affecting accuracy.

Weakest Link/Cost Complexity Pruning: In this more complex
method, a subtree is removed based on a learning parameter and
the weight of its parent node.'"”

RANDOM FOREST

Random Forest builds on the Decision Tree concept, where
the "forest" represents multiple Decision Trees considered
simultaneously. The term "random" reflects that a random sample
of the training dataset is used to construct the trees, and the
selection of attributes for branching nodes is also random. This
randomness is known as Bootstrapping.

Bootstrapping integrates randomness with replacing training
samples for tree building and attribute selection for splitting under
higher variance or lower entropy conditions. Due to this inherent
randomness, the one with higher variance but lower cumulative
variance is selected among the multiple Decision Trees formed.
This predictive approach of choosing the optimal Decision Tree
by averaging the variance is referred to as Bootstrap Aggregation

18-20

or Bagging.
K-NEAREST NEIGHBORS

K-Nearest Neighbors (KNN) is an easy-to-implement supervised
machine learning algorithm used for both classification and
regression tasks. As the name suggests, this algorithm relies on
the proximity of data points, meaning that similar data items are
located close to each other. To determine the closeness between
data observations, the distance is calculated using the Minkowski
Distance.

The Minkowski Distance is a generalized distance metric applied
in anormed vector space, where the distance is measured between
vectors. The term "normed" indicates that each vector has a
non-negative length. The normed vector space is characterized
by three properties: the zero vector, scalar factor, and triangular
inequality, which governs the calculation of distance between
points.

The formula for the Minkowski Distance is given by:

DGy = O b=yl

i=1

This distance metric can be tailored for different applications by
varying the parameter p:

11



Mishra: Machine Learning for Energy Forecasting

i. Manhattan Distance (p=1): This distance is defined as the
absolute sum of differences between Cartesian coordinates and is
commonly used to evaluate grid paths. The formula is:

n
DY) = ) Pxi—yil
i=1

The L1 Norm, or Manhattan Distance, quantifies the absolute
sum of differences in the vector space.

i. Euclidean Distance (p=2): This distance represents the
straight-line distance between points. The formula is:

n

DEoy) = O byl

i=1

The L2 Norm, or Euclidean Distance, employs the Pythagorean
Theorem to calculate distance. However, since the vectors
are squared, this approach can skew results, as outliers
disproportionately influence the distance.

i. Chebyshev Distance (p=c0): This distance is defined as the
maximum absolute difference along any coordinate dimension:
D(x,y) = mflxﬂxi —yil)

KNN'’s simplicity and effectiveness make it a popular choice for
various machine learning applications, mainly when dealing
with classification problems where the relationship between
observations is crucial * >

EVALUATING METRICS

Loss Function

In regression tasks, loss functions measure the accuracy of
predictions by quantifying the difference between the predicted
and actual values. Below are five key loss functions for regression
models,*** each with a formula and explanation:

Mean Square Error (MSE)

Mean Square Error is the most commonly used loss function in
regression. It calculates the average squared difference between
the actual and predicted values, making larger errors more
significant due to squaring.

l n
1@ = 3 ) () = 30?
i=1
Where:
a. n: data size,
b. h(x): hypothesis function,
hQ) = Q+Qx+Qx,+. .. +Qx,

c. y: Actual output.
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MSE is sensitive to outliers since errors are squared before they
are averaged, giving more weight to larger discrepancies.”

Root Mean Square Error (RMSE)

Root Mean Square Error is the square root of the MSE. It offers a
measure of how far, on average, the residuals are from zero, in the
same units as the output variable.

Jj@ =

22 (0 = 0

RMSE is often used for its interpretability and is effective when
large errors are particularly undesirable.?”

Mean Absolute Error (MAE)

Mean Absolute Error measures the average of the absolute
differences between the predicted and actual values. Unlike MSE,
it does not penalize larger errors as heavily since no squaring is
involved. 1
J@ =+ k() — il

i=1
MAE is robust to outliers and offers a more balanced metric for
understanding prediction errors.?

CROSS VALIDATION

To ensure that the model has analysed and understood the data
pattern without noise or without being overfitted/underfitting or
with low bias, cross validation is required to statistically behold
the stability of the model.

Cross Validation is a validation technique for the model to
statistically examine the generalization pattern of the results on
the independent dataset.

This model validation method provides a bit of flexibility over the
splitting or groups or k-folds, which are as follows:

k-Fold (k=2)

It means the data is grouped into two i.e. the training and the test
data. This type of grouping is opted if, we have enough data to
make the model learn the pattern on a randomly trained training
data. Any duplicacy and overlapping of grouped data should be
avoid and final model - after testing - should be retrained on the
complete dataset without any tuning in the hyperparameters.

k-Fold (k=3)

This is comparatively a better approach then binary grouping the
dataset as the dataset is bifurcated into three, the training data,
the validation data and the test data. To evaluate the quality of
model fitted on trained data, model is validated (prior to testing)
on a new sample (validation dataset). This pattern is chosen if the
data size is sufficient enough to be grouped as such.

BEMS Reports, Vol 12, Issue 1, Jan-Jun, 2026



Mishra: Machine Learning for Energy Forecasting

k-Fold (k)

For splitting the dataset, this is a prominent approach as the data
available for to model the decipher the pattern is not never enough
and model has to the problems of underfitting and increased loss.

In this method, the data is grouped into k folds and model is
trained into k-1 times. Each time k-1 portion is trained and is
validated over the remaining portion. Each time the model is
trained is validated on a new piece of data which significantly
reduces the underfitting and the overfitting problem. This method
is chosen for a small sized data as the model is free from a high
bias or a high variance.

FORECASTING

Forecasting can be defined as the process of analyzing and
examining collected historical and current data to make
predictions about future scenarios.29 In the context of optimal
energy usage and supply, forecasting plays a crucial role in
enhancing efliciency, reducing costs, and improving resource
allocation.”

Forecasting techniques are applied across various domains,
particularly in fields characterized by fluctuating parameters,
such as energy consumption, temperature, and weather.* These
techniques utilize statistical analysis to derive meaningful
insights from observed data, which is subsequently fed into
data processing phases to prepare datasets and apply regression
algorithms.*

TIME SERIES FORECASTING

Time Series Forecasting is a technique used to predict® events
based on sequences of observations over time.* It assumes that
historical data patterns will continue. In energy forecasting, time
series analysis helps identify trends, seasonality, and other cyclical
patterns in energy usage.”

Critical aspects of time series forecasting include

i. Identification of Patterns: By analyzing historical data, various
patterns such as trends (increasing or decreasing), seasonality
(cyclical fluctuations), and noise (random variations) can be
identified.*

ii. Stationarity: A stationary time series has constant mean and
variance, making it easier to model.37 Statistical techniques are
often employed to achieve stationarity by removing trends and
seasonal effects.

The Augmented Dickey-Fuller Test (ADF Test) is commonly used
to test for stationarity within a time series.* The null hypothesis of
this test indicates the* presence of a unit root (non-stationarity),
while the alternative hypothesis suggests the absence of unit roots
(stationarity). A stationary time series will have consistent mean
and variance, enabling more reliable predictions.*
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A transformation method known as differencing is applied to
remove dependencies in the series. This technique stabilizes the
mean by eliminating trends and seasonal components, facilitating
a more accurate analysis."!

Time series forecasting techniques have applications in various
fields, including:

i. Weather Prediction: Forecasting energy demand based on
temperature and weather patterns.**

ii. Pattern Recognition: Identifying usage trends and anomalies
in energy consumption.*

iii. Economics: Analyzing and predicting market dynamics and
energy pricing.*

iv. Earthquake Prediction: Utilizing time series methods
to anticipate seismic events and their impact on energy
infrastructure.*

ENERGY FORECASTING

Energy forecasting specifically refers to predicting future energy
consumption, resource availability, and electricity prices.* This
type of forecasting informs policymakers, utility companies,
and consumers about expected energy trends, facilitating better
planning and management of energy resources.*

CONCLUSION

In conclusion, Power System Forecasting is a critical process that
enables utilities and energy managers to make informed decisions
regarding energy generation, distribution,* and consumption. By
utilizing various forecasting techniques tailored to different time
spans-short-term, medium-term, and long-term-stakeholders
can enhance the reliability and efficiency of power systems.

Short-term forecasting facilitates real-time management of
electricity loads and trading, ensuring a balance between supply
and demand. Medium-term forecasting aids in the optimization
of energy storage solutions, especially for renewable sources, thus
contributing to the sustainability of the energy sector. Long-term
forecasting plays a vital role in strategic planning, enabling energy
providers to anticipate future consumption trends influenced by
socio-economic factors.

The application of statistical methods, such as regression models
and time series analysis, allows for the effective prediction of
energy needs, paving the way for a more resilient and responsive
power system.” As the energy landscape continues to evolve, the
integration of advanced forecasting models will be paramount in
addressing the challenges posed by fluctuating energy demands
and the increasing reliance on renewable resources.
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