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ABSTRACT

In medical diagnostics and treatment, precise administration and monitoring are essential,
especially in cancer therapy, where personalized drug dosage becomes critical due to varying
patient responses. Human demographics exhibit diverse reactions to drug administration,
necessitating individualized treatment regimens for cancer patients. The effects of drugs on
cancer cells vary based on dosage, highlighting the need for a mathematical framework to model
drug intake, absorption in the gastrointestinal tract, and eventual circulation in the bloodstream.
For physicians, initial drug dosing and administration schedules-typically spanning a week-are
observed before adjustment. This study mirrors this practical approach by proposing an optimal
control therapy for cancer treatment, explicitly using chemotherapy. Through Pharmacokinetics
(PK) modelling, one can explore dose optimization strategies to provide patient-specific, optimal
drug regimens tailored to individual cancer patients. The research emphasizes the critical role of
prior knowledge and control therapy in enhancing treatment outcomes.
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INTRODUCTION

In medical examinations, each patient presents with unique
demographics and medical history, resulting in distinct drug
interactions. Consequently, it is vital to establish the correct
therapeutic approach, particularly for complex diseases like
cancer, where the dynamics of tumour cell generation and
degeneration play a crucial role. Beyond disease-specific drug
dosage, personalized drug administration is necessary to ensure
accurate treatment for each patient.

Certain research investigates new methodologies for calculating
optimal dose regimens in cancer treatment, specifically using
chemotherapy. By delving into key results and exploring novel
optimization techniques, one can aim to provide an optimal drug
administration approach tailored to individual cancer patients.
The study uses a cost function to minimize both the model’s cost
and resource usage, while achieving favourable outcomes through
linear modelling. The balance between drug toxicity and tumour
reduction is a focal point in this control therapy.
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LITERATURE REVIEW

Cancer treatments have evolved significantly over time. Research
suggests that in 70% of cancer cases, there is a disruption
in the survival mechanisms of specialized cells, particularly
macrophages, which are responsible for regulating or eradicating
dead and degenerative cells.'? Studies have explored the role
of macrophages in populating antigens and rejuvenating the
immune system, with therapies leveraging this effect to combat
cancer cells.*> However, treatments using macrophage-based
approaches have also been shown to sometimes increase tumour
size.5’

Chemotherapy, in conjunction with drug dosing, has proven
to be a viable alternative to radiotherapy, which often results
in harmful side effects by destroying healthy cells along with

cancerous ones.*1?

Optimal control therapy, in this context,
ensures that drug administration is fine-tuned to minimize
resource consumption while maximizing therapeutic efficacy.'"'2
This is achieved through Pharmacokinetic (PK) modelling, where
drug concentration is carefully monitored and administered at

stable infusion rates.!>!*

While PK models offer a reliable method for drug administration,
they face challenges in approximating induction phases and
synchronizing drug delivery with the Pharmacodynamic

(PD) response. Solutions have been proposed through
the synchronization of drug administration intervals,”
and these improvements have been complemented by
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microprocessor-controlled drug infusions, which allow for more
precise control.'®

An alternative approach, Physiological-Based Pharmacokinetic
(PBPK) modelling, predicts chemical concentrations in regions
lacking data by leveraging the ADME (Absorption, Distribution,
Metabolism, and Excretion) approach.'”* PBPK modelling has
been widely studied for its applications in chemotherapy and its
ability to handle physiological complexities.'**°

Non-negative and compartmental models have also proven
useful in handling closed-loop control problems in drug
administration, with interconnected subsystems providing better
drug management.”* Adaptive algorithms, incorporating PK/PD
models and control systems, have shown promise in adjusting
drug concentrations to patient responses.’>** However, these
algorithms often assume fixed PK or PD models, which may limit
their adaptability.”®

Advances in genomics have provided further insights into cancer
heterogeneity. Techniques such as DNA sequencing and machine
learning models are now used to track cancer progression and
predict cell behaviour based on genomic data.”** Genomic
profiling from resources like The Cancer Genome Atlas offers
crucial data on tumour evolution, allowing for the development
of patient-specific treatments.”

CHEMOTHERAPY

The earliest and most common form of cancer treatment,
radiotherapy, often resulted in collateral damage to healthy cells.
Chemotherapy emerged as an alternative that uses anti-cancer
drugs to suppress cancer cell growth and division. Its effectiveness
lies in its ability to target rapidly dividing cancer cells while
preventing mutation and spread.

Chemotherapy integrates two models: Pharmacokinetics (PK)
and Pharmacodynamics (PD). The PK model addresses the
drug’s administration and dosage, while the PD model focuses
on its effects and mechanisms of action. In this study, we focus
primarily on PK models, exploring their dynamics and multiple
dosing strategies. This foundation will pave the way for future PD
model studies.

REVIEW OF MATHEMATICAL MODELING

Mathematical modelling in medical research has progressed
significantly, providing a quantitative mechanism to investigate
complex biological phenomena like cancer. Cancer, being
a genetic disease, is driven by evolutionary processes. The
continuous mutation and accumulation of cancer cells make them
more robust and challenging to treat, necessitating a detailed
analysis of their behaviour through micro-level observations and
quantitative mathematical models.
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CANCER GROWTH AND EVOLUTION MODELS

Cancer cells undergo various genetic mutations, which impact
their growth, spread, and survival within tissues. To understand
these processes, mathematical models are essential for structuring
biological dynamics. These models allow us to describe, predict,
and analyse cancer development at cellular and tissue levels.

Branching processes are commonly used in cancer modelling to
account for probabilistic cell growth. This process assumes that
cancer cells follow similar growth patterns over time, simplifying
the analysis. However, the key challenge remains patient-specific
administration and the need for disease-specific data to tailor
treatment to individual patients.

Critical Components of Mathematical Models for
Cancer

Patient-specific administration: Tailored treatments based on
individual patient characteristics.

Disease-specific data: The type of cancer informs accurate
dosage patterns.

Adaptive models: Algorithms that adjust drug dosage based on
patient demographics and medical history.

MODELING WITH ORDINARY DIFFERENTIAL
EQUATIONS (ODES)

The mathematical foundation for modelling cell populations,
especially in chemotherapy, often involves Ordinary Differential
Equations (ODEs). These equations describe how healthy cells
can transition into cancerous states and degrade over time. A
more detailed multi-stage model for cancer growth accounts for
cell susceptibility to mutation and metabolic influences.

Using these ODEsas aframework to simulate the tumour’s reaction
to drug treatments helps to better understand the interaction
between healthy and cancerous cells during chemotherapy.

OPTIMIZATION IN CHEMOTHERAPY

Optimization plays a crucial role in chemotherapy by helping
adjust drug dosages and intervals for each patient. A personalized
dose regimen, informed by an optimized Pharmacokinetics (PK)
model, ensures that the drug is administered with minimal side
effects while maximizing its effectiveness.

The PK model focuses on drug movement and transformation
within the body, which is influenced by various organs'
absorption and metabolism rates. This model is paired with a
Pharmacodynamic (PD) model that describes the drug's effect on
cancer cells.

Optimization aims to balance the drug’s impact on cancerous
cells* while minimizing damage to healthy cells, a critical issue in
chemotherapy. Researchers use Ordinary Differential Equations
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to model the kinetics of drug interactions within the body and
has seems to have fruitful results.

CHALLENGES AND FUTURE DIRECTIONS

Key challenges remain in incorporating patient-specific factors
into these models. Future work will focus on improving the
adaptability of mathematical models for individual treatment
plans and integrating real-time data to optimize drug delivery.

An overview of the theoretical formulation in Section 3 provides
a sufficient explanation of the Pharmacokinetic (PK) model used
for drug delivery in chemotherapy, specifically Imatinib.!

THEORETICAL FORMULATION

Pharmacokinetic (PK) Model Overview

The PK model focuses on how the concentration of Imatinib,
a drug used to target cancer cells, changes over time in the
gastrointestinal tract and bloodstream. The two differential
equations describe this behavior, modeling the drug's absorption
from the gastrointestinal tract (Equation la) and its clearance
from the bloodstream (Equation 1c). The equations provide a
foundation for simulating drug administration and the resulting
concentration over time.

ddif = —koxg(t), t>0

(la)

Equation (1a): Describes how the concentration of Imatinib in
the gastrointestinal tract decreases due to absorption.

Here, x, is the concentration of Imatnib in the gastrointestinal
tract as a function of time, with dimensions of mg, and k_is a
rate constant (dimensions: [hr]™') Equation (1a) is seeded with
the initial condition:

x(0)=D, (1b)
Here, D is the initial dose of Imatnib adminstered to the patient,
and f is the bioavailability. Furthermore, the amount of Imatnib
in the bloodstream changes over time according to the following
model equation:
dx; xp(t)
d._fb = —kaxg(t) — CL(bT, t=0 (1C)
Equation (1c): Models how the concentration of Imatinib in the
bloodstream increases from absorption and decreases due to
clearance.

Here, x, is the concentration of Imatnib in the bloodstream as
a function of time, with dimensions of mig, CL is the clearance
rate, and v is the total volume of the patient’s blood (in litres). The
initial condition reads as:

x,(0)=0 (1d)

Equations (1) are set up for a once-off dose D delivered at time t =
0. However, in the present context, we wish to simulate repeated
doses administered at times {t,= 0, t, t,, ..., t, = T}. Here, T is the
time of the final dose chosen in the simulations so that the system
reaches a quasi-steady state. Thus, similar to counting the zeroth
dose, N doses are administered and Equation (1) modifies as the
ordinary differential equations are solved piecewise between a
time intervals.

DRUG ADMINISTRATION SCANERIOS

In the context of chemotherapy, drug administration involves
repeated doses. In practice, the doses {D, D, * * ¢, D -1}
can be distinct, although following are the two-dosing scenario
considers:

Scenario 1: All doses are the same D, = D, forall j=0, 1, 2, = *
*,N-1

Scenario 2: The first dose differs, and subsequent doses are the
same or follow a sequence.

In the second dose scenario, we might have:
Dj=D0,j=0,D,j> 0,

or

Dj=D0,j=0;Dl,j=1;D,j> 1, etc.

The intervals 7, = t, - t—1 (for j = 1, 2, ..., N) between doses can
also be variable, however, in this work we will mostly look at a
fixed dose interval, e.g. 7= 24 hr, = 12 hr, T = 8 hr, etc. Therefore,
in the following exposition, to fix ideas, we will assume a fixed
dose interval 7.

OBJECTIVES AND COST FUNCTION

The aim of this work is to keep the concentration of the drug in
the patient’s body as close to a target level C,as possible. Here,
the concentration is measured as C = xb/v, in mg/litre. As such,
we introduce the Euclidean distance between the instantaneous
concentration and the optimal target concentration:

¢C,C,)=IC-C_|
We furthermore introduce cost function which penalizes
the average deviation of the concentration from the target
concenfration. aver the time interval of interest [0). T1:

J(Ds, Dy, ., Dy, T) =X, [ e(C(#), Ctarg)at

This setup allows flexibility in simulating different treatment
regimens, which is crucial for optimizing drug delivery based on
individual patient needs.

Therefore, in a nutshell, the aim of this project is to minimize the
cost function.

J(D, D, s Dy, T)

) N-1’
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as a function of the input parameters {D, D, ..., D, },and 7.

NUMERICAL APPROACH

Although analytical solutions to the equations exist, this work
opts for a numerical solution using solvers like ODE45 in
MATLAB or its equivalent in Python. This approach provides
a general framework for other PK/PD models that may need to
admit analytical solutions. Researchers compute the numerical
cost function using a Riemann sum based on the interpolation of

numerical solutions.

OPTIMIZATION TECHNIQUES

Two optimization approaches explore

Brute Force Computation: Suitable for low-dimensional
optimizations, where the cost function evaluates for a range of

dose values.

Built-in Optimization Methods: These are more sophisticated
and involve function calls to MATLAB's ‘minion" or its Python

equivalent to minimizing the cost function.

RESULTS AND REPRODUCTION OF PREVIOUS
WORK

BCR-ABL%

percentage observed over time for a cancer patient using piecewise

Analysis: Researchers model the mutation
linear regression on a logarithmic scale. It provides insight into

the exponential decay of cancer markers due to chemotherapy.

Drug Dosage Administration: Simulations show how the
concentration of Imatinib evolves both in the gastrointestinal
tract and the bloodstream. Based on the PK model, the Figures
illustrate standard and optimized drug dose administration for
patient 0001 00002 RH.

The optimized drug administration design maintains the drug
concentration close to the target level over time, minimizing side

effects and maximizing treatment efficacy.

FUTURE WORK

The theoretical formulation can include more complex PK/
PD models and patient-specific customization, such as varying
clearance rates, bioavailability, and tumour growth dynamics.

This section discusses the production of new results related
to drug dosage optimization for cancer treatment using a
Pharmacokinetic (PK) model and optimization methods. It
explores different drug administration schedules and dosages,
analyzing their effectiveness in achieving an optimal therapeutic

result with minimal side effects.
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Required Work for the following Dose
Administrations

¢ Single Drug Dose Administration.

e Double Drug Dose Administration.

e Triple Drug Dose Administration.

e Comparison Across Dosing Schedules.

e Four Drug Dose Administration.

CONCLUSION

Optimal Dosage Levels: Across all tested regimens, optimal
dosages range between 200 and 400 mg, depending on the daily
doses.

Work:
Pharmacodynamic (PD) models, study the influence of cancer

Future Future investigations may incorporate

cell mutations, and explore personalized treatment plans by
incorporating additional biological and clinical factors.

This study provides important insights into how multiple drug
doses can be optimized for cancer therapy, improving patient
outcomes while minimizing toxicity and side effects.
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