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ABSTRACT
In medical diagnostics and treatment, precise administration and monitoring are essential, 
especially in cancer therapy, where personalized drug dosage becomes critical due to varying 
patient responses. Human demographics exhibit diverse reactions to drug administration, 
necessitating individualized treatment regimens for cancer patients. The effects of drugs on 
cancer cells vary based on dosage, highlighting the need for a mathematical framework to model 
drug intake, absorption in the gastrointestinal tract, and eventual circulation in the bloodstream. 
For physicians, initial drug dosing and administration schedules-typically spanning a week-are 
observed before adjustment. This study mirrors this practical approach by proposing an optimal 
control therapy for cancer treatment, explicitly using chemotherapy. Through Pharmacokinetics 
(PK) modelling, one can explore dose optimization strategies to provide patient-specific, optimal 
drug regimens tailored to individual cancer patients. The research emphasizes the critical role of 
prior knowledge and control therapy in enhancing treatment outcomes.
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INTRODUCTION

In medical examinations, each patient presents with unique 
demographics and medical history, resulting in distinct drug 
interactions. Consequently, it is vital to establish the correct 
therapeutic approach, particularly for complex diseases like 
cancer, where the dynamics of tumour cell generation and 
degeneration play a crucial role. Beyond disease-specific drug 
dosage, personalized drug administration is necessary to ensure 
accurate treatment for each patient.

Certain research investigates new methodologies for calculating 
optimal dose regimens in cancer treatment, specifically using 
chemotherapy. By delving into key results and exploring novel 
optimization techniques, one can aim to provide an optimal drug 
administration approach tailored to individual cancer patients. 
The study uses a cost function to minimize both the model’s cost 
and resource usage, while achieving favourable outcomes through 
linear modelling. The balance between drug toxicity and tumour 
reduction is a focal point in this control therapy.

LITERATURE REVIEW

Cancer treatments have evolved significantly over time. Research 
suggests that in 70% of cancer cases, there is a disruption 
in the survival mechanisms of specialized cells, particularly 
macrophages, which are responsible for regulating or eradicating 
dead and degenerative cells.1-3 Studies have explored the role 
of macrophages in populating antigens and rejuvenating the 
immune system, with therapies leveraging this effect to combat 
cancer cells.4,5 However, treatments using macrophage-based 
approaches have also been shown to sometimes increase tumour 
size.6,7

Chemotherapy, in conjunction with drug dosing, has proven 
to be a viable alternative to radiotherapy, which often results 
in harmful side effects by destroying healthy cells along with 
cancerous ones.8-10 Optimal control therapy, in this context, 
ensures that drug administration is fine-tuned to minimize 
resource consumption while maximizing therapeutic efficacy.11,12 
This is achieved through Pharmacokinetic (PK) modelling, where 
drug concentration is carefully monitored and administered at 
stable infusion rates.13,14

While PK models offer a reliable method for drug administration, 
they face challenges in approximating induction phases and 
synchronizing drug delivery with the Pharmacodynamic 
(PD) response. Solutions have been proposed through 
the synchronization of drug administration intervals,15 
and these improvements have been complemented by 
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microprocessor-controlled drug infusions, which allow for more 
precise control.16

An alternative approach, Physiological-Based Pharmacokinetic 
(PBPK) modelling, predicts chemical concentrations in regions 
lacking data by leveraging the ADME (Absorption, Distribution, 
Metabolism, and Excretion) approach.17,18 PBPK modelling has 
been widely studied for its applications in chemotherapy and its 
ability to handle physiological complexities.19,20

Non-negative and compartmental models have also proven 
useful in handling closed-loop control problems in drug 
administration, with interconnected subsystems providing better 
drug management.21 Adaptive algorithms, incorporating PK/PD 
models and control systems, have shown promise in adjusting 
drug concentrations to patient responses.22-24 However, these 
algorithms often assume fixed PK or PD models, which may limit 
their adaptability.25

Advances in genomics have provided further insights into cancer 
heterogeneity. Techniques such as DNA sequencing and machine 
learning models are now used to track cancer progression and 
predict cell behaviour based on genomic data.26-28 Genomic 
profiling from resources like The Cancer Genome Atlas offers 
crucial data on tumour evolution, allowing for the development 
of patient-specific treatments.29

CHEMOTHERAPY

The earliest and most common form of cancer treatment, 
radiotherapy, often resulted in collateral damage to healthy cells. 
Chemotherapy emerged as an alternative that uses anti-cancer 
drugs to suppress cancer cell growth and division. Its effectiveness 
lies in its ability to target rapidly dividing cancer cells while 
preventing mutation and spread.

Chemotherapy integrates two models: Pharmacokinetics (PK) 
and Pharmacodynamics (PD). The PK model addresses the 
drug’s administration and dosage, while the PD model focuses 
on its effects and mechanisms of action. In this study, we focus 
primarily on PK models, exploring their dynamics and multiple 
dosing strategies. This foundation will pave the way for future PD 
model studies.

REVIEW OF MATHEMATICAL MODELING

Mathematical modelling in medical research has progressed 
significantly, providing a quantitative mechanism to investigate 
complex biological phenomena like cancer. Cancer, being 
a genetic disease, is driven by evolutionary processes. The 
continuous mutation and accumulation of cancer cells make them 
more robust and challenging to treat, necessitating a detailed 
analysis of their behaviour through micro-level observations and 
quantitative mathematical models.

CANCER GROWTH AND EVOLUTION MODELS

Cancer cells undergo various genetic mutations, which impact 
their growth, spread, and survival within tissues. To understand 
these processes, mathematical models are essential for structuring 
biological dynamics. These models allow us to describe, predict, 
and analyse cancer development at cellular and tissue levels.

Branching processes are commonly used in cancer modelling to 
account for probabilistic cell growth. This process assumes that 
cancer cells follow similar growth patterns over time, simplifying 
the analysis. However, the key challenge remains patient-specific 
administration and the need for disease-specific data to tailor 
treatment to individual patients.

Critical Components of Mathematical Models for 
Cancer

Patient-specific administration: Tailored treatments based on 
individual patient characteristics.

Disease-specific data: The type of cancer informs accurate 
dosage patterns.

Adaptive models: Algorithms that adjust drug dosage based on 
patient demographics and medical history.

MODELING WITH ORDINARY DIFFERENTIAL 
EQUATIONS (ODES)

The mathematical foundation for modelling cell populations, 
especially in chemotherapy, often involves Ordinary Differential 
Equations (ODEs). These equations describe how healthy cells 
can transition into cancerous states and degrade over time. A 
more detailed multi-stage model for cancer growth accounts for 
cell susceptibility to mutation and metabolic influences.

Using these ODEs as a framework to simulate the tumour’s reaction 
to drug treatments helps to better understand the interaction 
between healthy and cancerous cells during chemotherapy.

OPTIMIZATION IN CHEMOTHERAPY

Optimization plays a crucial role in chemotherapy by helping 
adjust drug dosages and intervals for each patient. A personalized 
dose regimen, informed by an optimized Pharmacokinetics (PK) 
model, ensures that the drug is administered with minimal side 
effects while maximizing its effectiveness.

The PK model focuses on drug movement and transformation 
within the body, which is influenced by various organs' 
absorption and metabolism rates. This model is paired with a 
Pharmacodynamic (PD) model that describes the drug's effect on 
cancer cells.

Optimization aims to balance the drug’s impact on cancerous 
cells30 while minimizing damage to healthy cells, a critical issue in 
chemotherapy. Researchers use Ordinary Differential Equations 
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to model the kinetics of drug interactions within the body and 
has seems to have fruitful results.

CHALLENGES AND FUTURE DIRECTIONS

Key challenges remain in incorporating patient-specific factors 
into these models. Future work will focus on improving the 
adaptability of mathematical models for individual treatment 
plans and integrating real-time data to optimize drug delivery.

An overview of the theoretical formulation in Section 3 provides 
a sufficient explanation of the Pharmacokinetic (PK) model used 
for drug delivery in chemotherapy, specifically Imatinib.31

THEORETICAL FORMULATION

Pharmacokinetic (PK) Model Overview

The PK model focuses on how the concentration of Imatinib, 
a drug used to target cancer cells, changes over time in the 
gastrointestinal tract and bloodstream. The two differential 
equations describe this behavior, modeling the drug's absorption 
from the gastrointestinal tract (Equation 1a) and its clearance 
from the bloodstream (Equation 1c). The equations provide a 
foundation for simulating drug administration and the resulting 
concentration over time.

             (1a)

Equation (1a): Describes how the concentration of Imatinib in 
the gastrointestinal tract decreases due to absorption.

Here, xg is the concentration of Imatnib in the gastrointestinal 
tract as a function of time, with dimensions of mg, and ka is a 
rate constant (dimensions: [hr]−1) Equation (1a) is seeded with 
the initial condition:

xg​​(0)​ = Df​                (1b)

Here, D is the initial dose of Imatnib adminstered to the patient, 
and f is the bioavailability. Furthermore, the amount of Imatnib 
in the bloodstream changes over time according to the following 
model equation:

            (1c)

Equation (1c): Models how the concentration of Imatinib in the 
bloodstream increases from absorption and decreases due to 
clearance.

Here, xb is the concentration of Imatnib in the bloodstream as 
a function of time, with dimensions of mig, CL is the clearance 
rate, and v is the total volume of the patient’s blood (in litres). The 
initial condition reads as:

​​xb
(0)​ = 0​             (1d)

Equations (1) are set up for a once-off dose D delivered at time t = 
0. However, in the present context, we wish to simulate repeated 
doses administered at times {t0 = 0, t1, t2, ..., tN = T}. Here, T is the 
time of the final dose chosen in the simulations so that the system 
reaches a quasi-steady state. Thus, similar to counting the zeroth 
dose, N doses are administered and Equation (1) modifies as the 
ordinary differential equations are solved piecewise between a 
time intervals.

DRUG ADMINISTRATION SCANERIOS

In the context of chemotherapy, drug administration involves 
repeated doses. In practice, the doses {D0, D1, ・・・, DN−1} 
can be distinct, although following are the two-dosing scenario 
considers:

Scenario 1: All doses are the same Dj = D, for all j = 0, 1, 2, ・・
・, N − 1.

Scenario 2: The first dose differs, and subsequent doses are the 
same or follow a sequence.

In the second dose scenario, we might have:
Dj = D0, j = 0, D, j > 0,

or

Dj = D0, j = 0; D1, j = 1; D, j > 1, etc.

The intervals τj = tj − tj−1 (for j = 1, 2, ..., N) between doses can 
also be variable, however, in this work we will mostly look at a 
fixed dose interval, e.g. τ = 24 hr, τ = 12 hr, τ = 8 hr, etc. Therefore, 
in the following exposition, to fix ideas, we will assume a fixed 
dose interval τ.

OBJECTIVES AND COST FUNCTION

The aim of this work is to keep the concentration of the drug in 
the patient’s body as close to a target level Ctarg as possible. Here, 
the concentration is measured as C = ​xb / v,​ in mg/litre. As such, 
we introduce the Euclidean distance between the instantaneous 
concentration and the optimal target concentration:

​ε​(C, Ctarg) = |C − Ctarg|

We furthermore introduce cost function which penalizes 
the average deviation of the concentration from the target 
concentration, over the time interval of interest [0, T]:

​

This setup allows flexibility in simulating different treatment 
regimens, which is crucial for optimizing drug delivery based on 
individual patient needs.

Therefore, in a nutshell, the aim of this project is to minimize the 
cost function.

J(D0, D1, ..., DN−1, τ )
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as a function of the input parameters {D0, D1, ..., DN−1}, and τ.

NUMERICAL APPROACH

Although analytical solutions to the equations exist, this work 
opts for a numerical solution using solvers like ODE45 in 
MATLAB or its equivalent in Python. This approach provides 
a general framework for other PK/PD models that may need to 
admit analytical solutions. Researchers compute the numerical 
cost function using a Riemann sum based on the interpolation of 
numerical solutions.

OPTIMIZATION TECHNIQUES

Two optimization approaches explore

Brute Force Computation: Suitable for low-dimensional 
optimizations, where the cost function evaluates for a range of 
dose values.

Built-in Optimization Methods: These are more sophisticated 
and involve function calls to MATLAB's `minion` or its Python 
equivalent to minimizing the cost function.

RESULTS AND REPRODUCTION OF PREVIOUS 
WORK

BCR-ABL% Analysis: Researchers model the mutation 
percentage observed over time for a cancer patient using piecewise 
linear regression on a logarithmic scale. It provides insight into 
the exponential decay of cancer markers due to chemotherapy.

Drug Dosage Administration: Simulations show how the 
concentration of Imatinib evolves both in the gastrointestinal 
tract and the bloodstream. Based on the PK model, the Figures 
illustrate standard and optimized drug dose administration for 
patient 0001 00002 RH.

The optimized drug administration design maintains the drug 
concentration close to the target level over time, minimizing side 
effects and maximizing treatment efficacy.

FUTURE WORK

The theoretical formulation can include more complex PK/
PD models and patient-specific customization, such as varying 
clearance rates, bioavailability, and tumour growth dynamics.

This section discusses the production of new results related 
to drug dosage optimization for cancer treatment using a 
Pharmacokinetic (PK) model and optimization methods. It 
explores different drug administration schedules and dosages, 
analyzing their effectiveness in achieving an optimal therapeutic 
result with minimal side effects.

Required Work for the following Dose 
Administrations

	 •	 Single Drug Dose Administration.

	 •	 Double Drug Dose Administration.

	 •	 Triple Drug Dose Administration.

	 •	 Comparison Across Dosing Schedules.

	 •	 Four Drug Dose Administration.

CONCLUSION

Optimal Dosage Levels: Across all tested regimens, optimal 
dosages range between 200 and 400 mg, depending on the daily 
doses.

Future Work: Future investigations may incorporate 
Pharmacodynamic (PD) models, study the influence of cancer 
cell mutations, and explore personalized treatment plans by 
incorporating additional biological and clinical factors.

This study provides important insights into how multiple drug 
doses can be optimized for cancer therapy, improving patient 
outcomes while minimizing toxicity and side effects.
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